IRREDUCIBLE REPRESENTATIONS OF THE c^* -ALGEBRA GENERATED BY A QUASINORMAL OPERATOR

BY

JOHN W. BUNCE(1)

ABSTRACT. For A a quasinormal operator on Hilbert space, we determine the irreducible representations of $C^*(A)$, the C^* -algebra generated by A and the identity. We also explicitly describe the topology on the space of unitary equivalence classes of irreducible representations of $C^*(A)$ and calculate the regularized transform of $C^*(A)$, thus exhibiting an isomorphic copy of $C^*(A)$.

1. Introduction and preliminaries. For A a bounded linear operator on a Hilbert space, let $C^*(A)$ denote the C^* -algebra generated by A and the identity I. By the spectrum of $C^*(A)$ we mean the set of unitary equivalence classes of irreducible representations of $C^*(A)$ equipped with the hull-kernel topology [8, § 3]. (By "representation" we mean an identity preserving *-representation.) A character of a C^* -algebra is a multiplicative linear functional of the algebra onto the complex numbers. In [6] the spectrum of $C^*(A)$ was calculated for the class of binormal operators introduced by A. Brown [3]. In this paper we calculate the spectrum of $C^*(A)$ for A a quasinormal operator. Quasinormal operators were introduced (under another name) by Brown in [2] and are operators A such that A commutes with A^*A .

For K a Hilbert space let \widetilde{K} be the set of sequences (x_0, x_1, x_2, \cdots) with $x_i \in K$ for all i and the sequence $(\|x_i\|)$ square-summable. If P is a positive operator on K, define a bounded operator on \widetilde{K} by $\widehat{P}(x_0, x_1, x_2, \cdots) = (0, Px_0, Px_1, \cdots)$. Then \widehat{P} is quasinormal. In [2] Brown proved that the most general quasinormal operator is unitarily equivalent to one of the form $\widehat{P} \oplus N$, where P is positive and one-to-one and N is normal. It is then immediate that an irreducible quasinormal operator is either an operator on a one-dimensional space or is unitarily equivalent to a nonzero positive scalar multiple of U_+ , where U_+ is the unilateral forward shift of multiplicity one. Thus if A is quasinormal and π is an irreducible representation of $C^*(A)$, then since $\pi(A)$ is irreducible quasinormal either π is a character of $C^*(A)$ or $\pi(A)$ is unitarily equivalent to

Received by the editors September 28, 1972.

AMS (MOS) subject classifications (1970). Primary 46L05, 46L25, 47C10; Secondary 47B20.

Key words and phrases. Irreducible representation, spectrum, quasinormal operator, Hausdorff compactification, regularized transform.

⁽¹⁾ The author was partially supported by an NSF grant.

a positive scalar multiple of U_+ . In either case $C^*(\pi(A))$ contains the compact operators on H_π , the Hilbert space associated with π , hence $C^*(A)$ is a GCR or postliminaire C^* -algebra when A is quasinormal $[8, \S 9]$. In $\S 2$ of this paper we parametrize the spectrum of $C^*(A)$ and exhibit the topology on the spectrum. In $\S 3$ we calculate what J. M. G. Fell [9] calls the regularized transform algebra of $C^*(A)$, thus exhibiting an isomorphic copy of $C^*(A)$.

We note that L. A. Coburn determined the spectrum of $C^*(U_+)$ in [7]. The identity representation is the unique (up to unitary equivalence) infinite-dimensional irreducible representation of $C^*(U_+)$ and for each complex z, |z|=1, there is a character \hat{z} of $C^*(U_+)$ with $\hat{z}(U_+)=z$. These are all the equivalence classes of irreducible representations of $C^*(U_+)$. H. Behncke noted that $C^*(A)$ is GCR for A quasinormal in [1]. H. Gonshor essentially found the regularized transform algebra of $C^*(A)$ for A binormal in [11].

2. The spectrum of $C^*(A)$. Throughout this section A will denote a quasinormal operator. As shown in the introduction if π is an irreducible representation of $C^*(A)$, then either π is a character or $\pi(A)$ acts on separable infinite-dimensional Hilbert space. We note that a representation π of $C^*(A)$ is completely determined by $\pi(A)$. We first describe some irreducible representations of $C^*(A)$ and then show that every irreducible representation is unitarily equivalent to one of these.

As shown in the introduction, we can write $A = \hat{P} \oplus N$, where P is positive and N is normal (we do not assume that P is one-to-one). We denote the spectrum of an operator T by $\operatorname{sp}(T)$ and the approximate point spectrum of T by $\operatorname{a}(T)$. By $[5, \operatorname{Proposition } 8]$ $\operatorname{a}(\hat{P}) = \{z\alpha \colon |z| = 1, \ \alpha \in \operatorname{sp}(P)\}$. Now \hat{P} is hyponormal (i.e., $\hat{P}(\hat{P})^* \leq (\hat{P})^* \hat{P})$ so, by $[4, \operatorname{Corollary } 10]$, for each $\lambda \in \operatorname{a}(\hat{P})$ there is a character f of $C^*(\hat{P})$ such that $f(\hat{P}) = \lambda$. But $C^*(A)$ is contained in $C^*(\hat{P}) \oplus C^*(N)$ and π defined by $\pi(B \oplus D) = f(B)$ for $B \in C^*(\hat{P})$ and $D \in C^*(N)$ is clearly a character of $C^*(\hat{P}) \oplus C^*(N)$, so for each $\lambda \in \operatorname{a}(\hat{P})$ there is a character π of $C^*(A)$ with $\pi(A) = \lambda$. Similarly, if $\lambda \in \operatorname{sp}(N)$ then by the Gel'fand theory there is a character f of f of

Now let λ be a nonzero number in $\operatorname{sp}(P)$. We show that there is an irreducible representation π of $C^*(A)$ with $\pi(A) = \lambda U_+$. If P acts on a Hilbert space K and \widetilde{P} acts on \widetilde{K} , then it is easily seen that \widehat{P} is unitarily equivalent to the operator $P \otimes U_+$ acting on $K \otimes l^2$. Then $C^*(\widehat{P})$ is contained in the tensor product C^* -algebra $C^*(P) \overset{*}{\otimes} C^*(U_+)$ where the norm in $C^*(P) \overset{*}{\otimes} C^*(U_+)$ is the operator norm as operators on $K \otimes l^2$. Then if $0 \neq \lambda \in \operatorname{sp}(P)$ there is a character P of $C^*(P)$ with $P(P) = \lambda$. Let P(P) = 0 be the identity representation of P(P) = 0. Then P(P) = 0 defined on the algebraic tensor product $P(P) \otimes P(U_+)$ by $P(P) \otimes P(P) \otimes P(U_+)$ for all $P(P) \otimes P(P)$, $P(P) \otimes P(U_+)$, extends to an irreducible representation

of $C^*(P) \overset{*}{\otimes} C^*(I_+)$ [12]. Thus there is a representation π of $C^*(\hat{P})$ with $\pi(\hat{P}) = \lambda U^+$. Since $C^*(A)$ is contained in $C^*(\hat{P}) \oplus C^*(N)$, it is clear that there is an irreducible representation π of $C^*(A)$ with $\pi(A) = \lambda U_+$.

We now show that the respesentations of $C^*(A)$ described above are all the irreducible representations of $C^*(A)$.

Theorem 1. Let A be a quasinormal operator with decomposition $A = \hat{P} \oplus N$, where P is positive and N is normal. Then for each $\lambda \in a(\hat{P}) \cup \operatorname{sp}(N)$ there is a character π of $C^*(A)$ with $\pi(A) = \lambda$. If $0 \neq \lambda \in \operatorname{sp}(P)$ then there is a representation π of $C^*(A)$ with $\pi(A) = \lambda U_+$. Conversely, every irreducible representation of $C^*(A)$ is unitarily equivalent to one of these.

Proof. Let π be an irreducible representation of $C^*(A)$ on a Hilbert space H. Then since $C^*(A) \subseteq C^*(\hat{P}) \oplus C^*(N)$, there is a Hilbert space H_1 containing H as a subspace and an irreducible representation π_1 of $C^*(\hat{P}) \oplus C^*(N)$ on H_1 such that $\pi_1(D) \mid H = \pi(D)$ for each $D \in C^*(A)$ [8, 2.10.2]. Now $I \oplus 0$ and $0 \oplus I$ are in the center of $C^*(\hat{P}) \oplus C^*(N)$, so since π_1 is irreducible either $\pi_1(I \oplus 0) = 0$ or $\pi_1(0 \oplus I) = 0$.

First, assume that $\pi_1(I \oplus 0) = 0$. Then $\pi_1(D \oplus 0) = 0$ for all $D \in C^*(\hat{P})$, so $\pi_1(C^*(\hat{P}) \oplus C^*(N))$ is irreducible and abelian, hence H_1 is one-dimensional and $H = H_1$. Then the map $B \to \pi_1(0 \oplus B)$ is a character of $C^*(N)$, so $\pi(A) = \pi_1(\hat{P} \oplus N) = \pi_1(0 \oplus N)$ is in sp(N). Thus π is a representation of one of the forms mentioned in the theorem.

Now assume that $\pi_1(0\oplus I)=0$. Then π_2 defined on $C^*(\hat{P})$ by $\pi_2(B)=\pi_1(B\oplus 0)$ is an irreducible representation of $C^*(\hat{P})$. Thus $\pi_2(\hat{P})$ is an irreducible quasinormal so $\pi_2(\hat{P})$ is either a positive scalar multiple of U_+ or H_1 is a one-dimensional space. If $H=H_1$ is one-dimensional and $\pi_2(\hat{P})=\lambda$, then π_2 is a character on $C^*(\hat{P})$, so by [4, Proposition 8], $\lambda=\pi_2(\hat{P})=\pi(A)$ is in $\alpha(\hat{P})$ and π is a character of $C^*(A)$, and π is a representation of one of the forms mentioned in the theorem. If $\pi_2(\hat{P})=\lambda U_+$ for $\lambda>0$, then since $\alpha(\pi_2(\hat{P}))=\{\lambda z\colon |z|=1\}$, $\alpha(\hat{P})=\{\alpha z\colon \alpha\in \operatorname{sp}(P),\ |z|=1\}$, and $\alpha(\pi_2(\hat{P}))\subseteq \alpha(\hat{P})$ by [4, Corollary 5], we have that $\lambda\in\operatorname{sp}(P)$. Finally, $\pi_2(\hat{P})=\pi_1(\hat{P}\oplus N)=\pi_1(A)$ and $\pi_1(A)$ acts irreducibly on H_1 , but H reduces $\pi_1(A)$, hence $H=H_1$ and $\pi(A)=\lambda U_+$. Hence, in any case, π must be of one of the forms mentioned in the theorem.

Now let $T_1 = \{(z, 0): z \in a(\hat{P}) \cup \operatorname{sp}(N)\}$ and $T_2 = \{(0, x): 0 \neq x \in \operatorname{sp}(P)\}$. Then let $T = T_1 \cup T_2$ and give T the following topology: call a subset F of T closed if and only if $F \cap T_1$ and $F \cap T_2$ are closed in their natural topologies and if $x \in F \cap T_2$, then $zx \in F \cap T_1$ for all complex z of modulus one. This is easily seen to be a compact T_0 topology on T. Let X denote the spectrum of $C^*(A)$ and using Theorem 1 define a bijection θ from T onto X by $\theta(z, 0)(A) = z$ if

 $(z, 0) \in T_1$ and $\theta(0, x)(A) = xU_+$ if $(0, x) \in T_2$. Here we mean that $\theta(z, 0)$ is a character on $C^*(A)$ which takes A to z, and $\theta(0, x)$ is a representation of $C^*(A)$ on l^2 which takes A to xU_+ .

Theorem 2. Let A be quasinormal. Then the map θ : $T \to X$ described above is a homeomorphism of the set T and the spectrum of $C^*(A)$.

Proof. Recall [8, 3.3.3] that if $\{D_i\}$ is a dense subset of $C^*(A)$, then a base for the hull-kernel topology on X is given by the sets $U_i = \{\pi \in X : \|\pi(D_i)\| > 1\}$. We will use the dense subset of $C^*(A)$ consisting of operators of the form D = $p(A, A^*)$ where p is a polynomial in two noncommuting variables. Since T and X both satisfy the second axiom of countability, sequential convergence determines the topology, so we do not need to consider nets. We show that θ is continuous. Let $t \in T$ and let a sequence (t_n) converge to t. Now $\{(z, 0): z \in T\}$ sp(N), $z \notin a(\hat{P})$ and T_2 are both open in T. If $t \in T_2$ we may assume that all $t_n \in T_2$. Then if t = (0, x), $t_n = (0, x_n)$, we have that x_n converges to x as a sequence of real numbers. Hence $\theta(t_n)(p(A, A^*)) = p(x_n U_+, x_n U_+^*)$ which converges to $p(xU_+, xU_+^*) = \theta(t)(p(A, A^*))$ in the norm as bounded operators on l^2 . Hence $\theta(t_n)$ converges to $\theta(t)$ in X. Likewise, if $t \in \{(z, 0): z \in \operatorname{sp}(N), z \notin a(\widehat{P})\}$, then we may assume that $t_n \in \{(z, 0): z \in \operatorname{sp}(N), z \notin a(\hat{P})\}$ and the sequence of complex numbers $\theta(t_n)(p(A, A^*))$ will converge to $\theta(t)(p(A, A^*))$, so that $\theta(t_n)$ converges to $\theta(T)$ in X. Suppose now that t = (z, 0) with $z \in a(\hat{P})$. If $z \neq 0$, let (z/|z|) be the character on $C^*(U_+)$ which takes U_+ to (z/|z|). Then

$$|(z/|z|)^{\hat{}}(p(|z|U_{+},|z|U_{+}^{*}))| = |p(z,\overline{z})| \le ||p(|z|U_{+},|z|U_{+}^{*})||.$$

If z=0, then we clearly have $|p(z,\overline{z})| \leq \|p(|z|U_+,|z|U_+^*)\|$. Now let (t_n) be a sequence in T which converges to $t=(z,0), z\in a(\widehat{P}),$ and suppose that the $t_n=(0,x_n)$ are in T_2 . Then clearly x_n converges to |z| in the natural topology on $\mathrm{sp}(P)$, and we have $\|\theta(t_n)(p(A,A^*))\| = \|p(x_nU_+,x_nU_+^*)\|$ which converges to $\|p(|z|U_+,|z|U_+^*)\|$. So if $\|\theta(t)(p(A,A^*))\| = |p(z,\overline{z})| > 1$, then $\|\theta(t_n)(p(A,A^*))\|$ is greater than one for large n. If the sequence (t_n) is in T_1 , then clearly $\theta(t_n)(p(A,A^*))$ converges to $\theta(t)(p(A,A^*))$. We have thus shown that if (t_n) converges to t in t, then t

To show that θ is a homeomorphism we take a closed set $F \subseteq T$ and show that $\theta(F)$ is closed in X. Now the set of characters of $C^*(A)$ is easily seen to be a compact Hausdorff subspace of X. We have $\theta(F) = \theta(F \cap T_1) \cup \theta(F \cap T_2)$, and $F \cap T_1$ is a closed, hence compact, subset of T_1 ; thus $\theta(F \cap T_1)$ is a compact subspace of the characters of $C^*(A)$ and $\theta(F \cap T_1)$ is closed in X. So let $\pi_n = \theta(0, x_n)$ be a sequence in $\theta(F \cap T_2)$ which converges in X to $\pi = \theta(t)$. We need only show that $t \in F$. There is a subsequence of x_n which converges to

 $y \in \operatorname{sp}(P)$, so we may assume that x_n converges to y. First suppose that $t = (0, x) \in T_2$. Then since for each $B \in C^*(A)$ the function $\pi \to \|\pi(B)\|$ is lower semicontinuous on X [8, 3.3.2], we have that $\|\pi(A)\| \le \liminf \|\pi_n(A)\|$, or $\|xU_+\| \le \liminf \|x_nU_+\|$, hence $x \le y$. Also if $B = \|P\| - (A^*A)^{1/2}$, then $\|\pi(B)\| \le \liminf \|\pi_n(B)\|$ or $\|(\|P\| - xI)\| \le \liminf \|\|P\| - x_nI\|$ so $y \le x$ and y = x. But F is closed and $(0, x_n)$ is in F, so $(0, x) \in F$. Now suppose that t = (z, 0) is in T_1 . Then almost exactly as in the case when $t \in T_2$ we see that $|z| \le y$ and $\|\|P\| - |z|I\| \le \|\|P\| - yI\|$ so that y = |z|. But $x_n \in F \cap T_2$ and x_n converges to y, so that $t = (z, 0) \in F$ by the definition of closed sets in T. So θ is a homeomorphism.

3. The regularized transform of $C^*(A)$. If A is a bounded operator on a Hilbert space, then A can be well understood without the structure of $C^*(A)$ being understood. It usually will not be clear which bounded operators are in $C^*(A)$. In this section we exhibit a C^* -algebra which is isomorphic to $C^*(A)$, for A a quasinormal operator. To do this we use a Stone-Weierstrass type theorem of Fell's [9, Theorem 1.4]. We thus need to sketch part of [9].

Let S be a compact Hausdorff space (Fell only assumes locally compact Hausdorff). For each $s \in S$ let $\mathfrak{A}(s)$ be a C^* -algebra. A full algebra of operator fields on S is a family \mathfrak{A} of functions on S, $A(s) \in \mathfrak{A}(s)$ for each $s \in S$ and $A \in \mathfrak{A}$ satisfying:

- (1) It is a *-algebra under the pointwise algebraic operations;
- (2) for each $A \in \mathcal{C}$ the function $s \to ||A(s)||$ is continuous on S;
- (3) for each s, $\{A(s); A \in \mathcal{C}\} = \mathcal{C}(s);$
- (4) If is complete in the norm $||A|| = \sup \{||A(s)|| : s \in S\}.$

The algebra $\mathcal{C}(s)$ is called the component of \mathcal{C} at s. A function f defined on S with $f(s) \in \mathcal{C}(s)$ is continuous (with respect to $\mathcal{C}(s)$) at s_0 , if for each $\epsilon > 0$, there is an element $A \in \mathcal{C}(s)$ and a neighborhood C(s) such that $\|f(s) - A(s)\| < \epsilon$ for all $s \in C(s)$. We say that f is continuous on S if it is continuous at all points of S. The algebra C(s) is called a maximal full algebra of operator fields if any f which is continuous with respect to C(s) on S(s) is actually in C(s).

Let \mathcal{B} and \mathcal{C} be C^* -algebras. A $(\mathcal{B},\mathcal{C})$ correlation is a relation R contained in $\mathcal{B} \times \mathcal{C}$ such that, for some third C^* -algebra \mathcal{D} and some *-homomorphisms f and g of \mathcal{B} and \mathcal{C} respectively onto \mathcal{D} , we have f f if and only if f(f) = g(f). Let \mathcal{C} be a maximal full algebra of operator fields on f. If f and f are distinct points of f and f is an f is an f is an f correlation, we define f if f be any full algebra of operator fields contained in f is an f then Fell's Stone-Weierstrass theorem says that f is the intersection of those f if f which contain f is the intersection of those f if f which contain f is the intersection of those f if f is the intersection of f is the intersection of those f if f is the intersection of f if f is the intersection of f if f is the intersection of f if f is the

We now sketch the construction of Fell's regularized transform of a C^* -algebra

492

 \Re [9, \S II]. Let X be any locally compact space with no separation axioms assumed. Let $\mathcal{C}(X)$ be the set of closed subsets of X. For each compact subset C of X and each finite family \mathcal{F} of nonvoid open subsets of X, let $U(C,\mathcal{F})$ be the set of all Y in $\mathcal{C}(X)$ such that $Y \cap C = \emptyset$ and $Y \cap B \neq \emptyset$ for each $B \in \mathcal{F}$. The set of all such $U(C,\mathcal{F})$ forms a basis for the open sets of a compact Hausdorff topology on $\mathcal{C}(X)$ called the H-topology. Then H(X) is defined as the closure in $\mathcal{C}(X)$ of the family of all closures of one-element subsets of X, and H(X) is called the Hausdorff compactification of X. By the limit set of a net (x_a) in X we mean the set of those Y in X such that (x_a) converges to Y. The net (x_a) is primitive if the limit set of (x_a) is the same as the limit set of each subnet of (x_a) . It is proved in [10] that the elements of H(X) are exactly those closed subsets of X which are the limit set of some primitive net of elements of X. The details of the Hausdorff compactification of X are in [10].

If \Re is a C^* -algebra then the spectrum $\widehat{\Re}$ of \Re is a locally compact space [8, Theorem 2.1]. Let $H(\widehat{\Re})$ denote the Hausdorff compactification of $\widehat{\Re}$. If $Y \in H(\widehat{\Re})$ let $\Re(Y)$ equal $\Re/I(Y)$, where $I(Y) = \bigcap \{\pi^{-1}(0): \pi \in Y\}$. For $a \in \Re$ let $\Re(Y)$ be the function with domain $H(\widehat{\Re})$ and range the union of the $\Re(Y)$, $Y \in H(\widehat{\Re})$, defined by $\Re(Y) = a + I(Y)$ (the coset of a in $\Re/I(Y)$). The family of all \Re , $a \in \Re$ is called the regularized transform of \Re . The regularized transform of \Re is a full algebra of operator fields on $H(\widehat{\Re})$ and is a C^* -algebra which is isomorphic to \Re .

In this section we calculate the regularized transform of $C^*(A)$, for A a quasinormal operator. By Theorem 2, we can identify the topological space T with the spectrum of $C^*(A)$. If Y is a closed subset of T which is the limit set of some primitive net of elements of T, then some thought shows that in fact Y is the closure of some one-element subset of T. Hence elements of H(T) are just the closures of one-element subsets of T. Now points in T_1 are closed in T and if $t=(0,x)\in T_2$, then the closure of t is $\{t\}\cup\{(zx,0)\colon |z|=1\}$. We then identify the closure of t with the point (0,x) in $R^2\times R$. Hence, as a set, it is clear that H(T) can be identified with the set $Q=Q_1\cup Q_2$ in $R^2\times R$, where $Q_1=\{(z,0)\colon z\in d(\hat{P})\cup \operatorname{sp}(N)\}$ and $Q_2=\{(0,x)\colon 0\ne x\in\operatorname{sp}(P)\}$. It is routine (but tedious to write down) that a subset of Q which is open in the relative topology from $R^2\times R$ is open when considered as a subset of H(T) is the relative H-topology. Hence the natural bijection from H(T) to Q is continuous and hence is a homeomorphism, since H(T) and Q are both compact Hausdorff spaces. We thus identify the spaces H(T) and Q.

The component algebras over each point in Q are easily described. If z is in $a(\hat{\rho}) \cup \operatorname{sp}(N)$, then the component algebra over (z, 0) is just the complex numbers. If $0 \neq x \in \operatorname{sp}(P)$ then the component algebra over (0, x) is $C^*(U_+)$. Thus all the component algebras are primitive. This is to be contrasted with the CCR

case: If \Re is a CCR C^* -algebra with every component algebra primitive, then the spectrum of \Re must be Hausdorff [9, p. 243]. If $B \in C^*(A)$ then the regularized transform \widetilde{B} of B is a complex-valued function on Q_1 and takes values in $C^*(U_+)$ on Q_2 . If θ is the function defined just before Theorem 2, then clearly $\widetilde{B}(q) = \theta(q)(B)$ for each $q \in Q$. We now show exactly which functions occur in the regularized transform of $C^*(A)$, and hence exhibit an isomorphic copy of $C^*(A)$.

Theorem 3. Let $A = N \oplus \hat{P}$ be a quasinormal operator. Let \mathfrak{D} be the set of functions f on Q such that

- (1) f restricted to Q_1 is complex valued and f restricted to Q_2 takes values in $C^*(U_+)$;
- (2) the functions $f: Q_1 \to \mathbb{C}$ and $f: Q_2 \to C^*(U_+)$ are continuous with the norm topology on the image space,
 - (3) if $0 \neq z \in a(\hat{P})$ then $f(z, 0) = (z|z|^{-1}) \hat{f}((0, |z|))$; and
- (4) if (x_n) is a sequence in sp(P) which converges to zero, then $f(0, x_n)$ converges to f(0, 0) in norm.

Then $\mathfrak D$ is the regularized transform of $C^*(A)$ and is a C^* -algebra which is isomorphic to $C^*(A)$.

Proof. Let \mathcal{C} be the set of functions on Q which satisfy properties (1), (2), and (4). Then ${\mathcal C}$ is clearly a maximal full algebra of operator fields on ${\mathcal Q}$, and \widetilde{A} is clearly in \mathcal{C} , hence $\{\widetilde{B}\colon B\in C^*(A)\}$ is a full algebra of operator fields contained in C. For $0 \neq z \in a(\hat{P})$ let R_z be the (C(z, 0), C(0, |z|)) correlation determined by the identity map of the scalars onto the scalars and the map $(z|z|^{-1})$ of $C^*(U_+)$ onto the scalars. Then $\mathcal{C}((z, 0), (0, |z|); R_z)$ is the set $\{f \in \mathcal{C}; f(z, 0) = 0\}$ $(z|z|^{-1})$ (f(0, |z|)). It is easy to see that $\widetilde{A} \in \mathcal{C}((z, 0), (0, |z|); R_z)$; hence by Fell's Stone-Weierstrass theorem, we will have $\mathfrak{D}=\{\widetilde{B}\colon B\in C^*(A)\}$ if we show that the R_z , $0 \neq z \in a(\hat{P})$ are the only correlations containing $\{\hat{B}: B \in C^*(A)\}$. First, suppose that R is a $(C(0, x_1), C(0, x_2))$ correlation with $0 \neq x_1 \in sp(P), 0 \neq x_2 \in Sp(P)$ sp(P), and $\mathcal{C}((0, x_1), (0, x_2); R)$ containing $\{\widetilde{B}: B \in C^*(A)\}$. Then there is a C^* -algebra \Re and $\frac{1}{2}$ -homomorphisms F and G of $C^*(U_+)$ onto \Re which determine R. But then $F(A^*A(0, x_1)) = G(A^*A(0, x_2))$ and $A^*A(0, x_1) = x_1^2 U_+^* U_+ = x_1^2 I_+$ so $x_1 = x_2$. Likewise, there are no $(\mathcal{C}(z, 0), \mathcal{C}(0, x))$ correlations with $z \in a(\hat{P})$ $\cup \operatorname{sp}(N)$, $0 \neq x \in \operatorname{sp}(P)$ and $|z| \neq x$. If R is a $(\mathcal{C}(x, 0), \mathcal{C}(y, 0))$ correlation with $x, y \in a(\hat{P}) \cup sp(N)$ and if R is determined by *-homomorphism F and G onto some C^* -algebra \mathcal{R} , then we have $F(\mathcal{X}(x, 0)) = G(\mathcal{X}(y, 0))$, so x = y. Finally, if R is a $(\mathcal{C}(z, 0), \mathcal{C}(0, |z|))$ correlation with $0 \neq z \in a(\hat{P})$ and R is determined by *-homomorphisms F and G of C and $C^*(U_+)$, respectively, onto some C^* -algebra \Re then F(A(z, 0)) = G(A(0, |z|)), so $zI = |z|G(U_+)$ and $G(U_+) = (z|z|^{-1})(U_+)$, so $G = (z|z|^{-1})$. Thus $R = R_z$. Hence the correlations R_z , $0 \neq z \in a(\hat{P})$ are the

only correlations which contain $\{\widetilde{B}: B \in C^*(A)\}$, and it follows that $\mathfrak{D} = \{\widetilde{B}: B \in C^*(A)\}$.

We remark that Theorem 3 can be used to show that the C^* -algebras generated by any two nonunitary isometries are isomorphic, a result that Coburn proved in [7]. For if V is a nonunitary isometry then $V = \hat{I}_{\alpha} \oplus W$, where I_{α} is the identity on some α -dimensional Hilbert space, and W is unitary. Then the set Q in Theorem 3 is $\{(z, 0): |z| = 1\} \cup \{(0, 1)\}$, and it is easily seen that $C^*(V)$ is *-isomorphic to $C^*(V_{+})$.

REFERENCES

- 1. H. Behncke, Structure of certain nonnormal operators, J. Math. Mech. 18 (1969), 103-107. MR 37 #4660.
- 2. A. Brown, On a class of operators, Proc. Amer. Math. Soc. 4 (1953), 723-728. MR 15, 538.
- 3. ——, The unitary equivalence of binormal operators, Amer. J. Math. 76 (1954), 414-434. MR 15, 967.
- 4. J. W. Bunce, Characters on singly generated C*-algebras, Proc. Amer. Math. Soc. 25 (1970), 297-303. MR 41 #4258.
- 5. ——, The joint spectrum of commuting nonnormal operators, Proc. Amer. Math. Soc. 29 (1971), 499-505. MR 44 #832.
- 6. J. W. Bunce and J. A. Deddens, Irreducible representations of the C*-algebra generated by an n-normal operator, Trans. Amer. Math Soc. 171 (1972), 301-307.
- 7. L. A. Coburn, The C^* -algebra generated by an isometry, Bull. Amer. Math. Soc. 73 (1967), 722-726. MR 35 #4760.
- 8. J. Dixmier, Les C*-algèbres et leurs représentations, Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1964. MR 30 #1404.
- 9. J. M. G. Fell, The structure of algebras of operator fields, Acta Math. 106 (1961), 233-280. MR 29 #1547.
- 10. ———, A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962), 472-476. MR 25 #2573.
- 11. H. Gonshor, Spectral theory for a class of nonnormal operators. II, Canad. J. Math. 10 (1958), 97-102. MR 19, 1066.
- 12. A. Guichardet, Tensor products of C^* -algebras, Dokl. Akad. Nauk SSSR 160 (1965), 986-989 = Soviet Math. Dokl. 6 (1965), 210-213. MR 31 #626.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KANSAS, LAWRENCE, KANSAS 66044